$\beta = 112.633 \ (1)^{\circ}$

Z = 2

V = 1613.37 (3) Å³

Mo $K\alpha$ radiation

 $0.28 \times 0.17 \times 0.09 \text{ mm}$

13439 measured reflections

3714 independent reflections

3197 reflections with $I > 2\sigma(I)$

 $\mu = 2.28 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.023$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[bis(1*H*-imidazole)bis(μ_2 -1*H*-imidazolido)bis(μ_2 -7-oxabicyclo[2.2.1]-heptane-2,3-dicarboxylato)trizinc(II)]

Qiu-Yue Lin,^{a,b} Na Wang^{a,b} and Yi-Zhou Wu^c*

^aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, ^bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and ^cCollege of Public Administration, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China

Correspondence e-mail: zjuwyz@126.com

Received 21 April 2010; accepted 14 May 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.060; data-to-parameter ratio = 16.7.

The title polymer, $[Zn_3(C_8H_8O_5)_2(C_3H_3N_2)_2(C_3H_4N_2)_2]_n$, was formed by the reaction of zinc acetate with imidazole and 7oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidine). One of the two crystallographically unique Zn^{II} atoms is four-coordinated by three N atoms of three imidazole ligands, two of which are deprotonated, and by one carboxylate O atom of the demethylcantharate anion. The second Zn^{II} atom is situated on an inversion centre and is six-coordinated by the bridging O atoms of two symmetry-related demethylcantharate anions and by four carboxylate O atoms of the corresponding carboxylate groups. The polymeric crystal structure is additionally stabilized by N–H···O hydrogen bonding between the imidazole ligands and carboxylate O atoms.

Related literature

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) is a lower toxicity anticancer drug, see: Shimi *et al.* (1982). For cobalt complexes of norcantharidin, see: Wang *et al.* (1988) and for those including imidazole ligands, see: Furenlid *et al.* (1986); Zhu *et al.* (2003).

Experimental

Crystal data

$$\begin{split} & [\text{Zn}_3(\text{C}_8\text{H}_8\text{O}_5)_2(\text{C}_3\text{H}_3\text{N}_2)_2\text{-}\\ & (\text{C}_3\text{H}_4\text{N}_2)_2]\\ & M_r = 834.71\\ & \text{Monoclinic, } P2_1/c\\ & a = 7.9993 \ (1) \text{ Å}\\ & b = 22.3923 \ (2) \text{ Å}\\ & c = 9.7586 \ (1) \text{ Å} \end{split}$$

Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{\rm min} = 0.629, T_{\rm max} = 0.822
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ 223 parameters $wR(F^2) = 0.060$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.36$ e Å⁻³3714 reflections $\Delta \rho_{min} = -0.28$ e Å⁻³

 Δ_{I}

Table 1

Selected bond lengths (Å).

Zn1-O2	1.9570 (12)	Zn2-O5	2.0266 (12)
Zn1-N1	1.9686 (14)	Zn2-O4	2.0819 (12)
Zn1-N2 ⁱ	1.9944 (14)	Zn2-O1	2.1862 (12)
Zn1-N3	1.9968 (16)		

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
N4-H4 B ···O5 ⁱⁱ	0.86	1.91	2.756 (2)	167		
Symmetry code: (ii) $-x + 1, -y + 1, -z + 2$.						

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

metal-organic compounds

The authors acknowledge financial support from the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2332).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Furenlid, L. R., Van Derveer, D. G. & Felton, R. H. (1986). Acta Cryst. C42, 806–809.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785–789.
- Wang, H.-H., Zhu, N.-J., Fu, H., Li, R. C. & Wang, K. (1988). Sci. Sin. Ser. B, 31, 20–27.
- Zhu, H.-L., Yang, S., Qiu, X.-Y., Xiong, Z.-D., You, Z.-L. & Wang, D.-Q. (2003). Acta Cryst. E**59**, m1089–m1090.

supplementary materials

Acta Cryst. (2010). E66, m705-m706 [doi:10.1107/S1600536810017915]

$\label{eq:poly_loss} Poly[bis(1H-imidazole)bis(\mu_2-1H-imidazolido)bis(\mu_2-7-oxabicyclo[2.2.1]heptane-2, 3-dicarboxylato)trizinc(II)]$

Q.-Y. Lin, N. Wang and Y.-Z. Wu

Comment

7-oxabicyclo[2,2,1] heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi *et al.*, 1982). Imidazole is reputed as biocatalyst and biological ligand. Several cobalt complexes of norcantharidin (Wang *et al.*, 1988) and of imidazole (Furenlid *et al.*, 1986; Zhu *et al.*, 2003) have been reported previously.

In the structure of the title compound, the Zn1(II) cation is four-coordinated by three nitrogen atoms of three imidazoles ligands, two of which are deprotonated, and by one carboxylate oxygen atom of the demethylcantharate anion. The deprotonated imidazole rings are responsible for bridging neighbouring Zn1 atoms. The Zn2(II) cation is located on a crystallographic centre of inversion. Two bridge oxygen atoms of two symmetry-related demethylcantharate anions and four carboxylate oxygen atoms give rise to a slightly distorted octahedral ZnO_6 coordination environment. Each demethylcantharate anion adopts simultaneously a bridging coordination mode (O2 towards Zn1, O4 towards Zn2) and a monodentate coordination mode (through O5 towards Zn2).

The crystal lattice is stabilized through N—H···O hydrogen bonds between the uncoordinated nitrogen atom (N4) of the imidazole molecule and one of the carboxylate oxygen atoms (O3) of the demethylcantharate anion.

Experimental

7-oxabicyclo[2,2,1] heptane-2,3-dicarboxylic anhydride, zinc acetate and imidazole were dissolved in 15 mL distilled water. The mixture was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. Crystals suitable for X-ray diffraction were obtained.

Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H 0.93 Å, aliphatic C—H = 0.97 (2) Å and N—H = 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(C,N)$].

Figures

Fig. 1. A view of the molecule of the title compound showing the atom-labelling and connectivity of the Zn^{II} atoms. Displacement ellipsoids drawn at the 30% probability level.

$Poly[bis(1H-imidazole)bis(\mu_2-1H-imidazolido)bis(\mu_2-7-oxabicyclo[2.2.1]heptane-2, 3-dicarboxylato)trizinc(II)]$

F(000) = 848

 $\theta=1.8{-}27.6^\circ$

 $\mu = 2.28 \text{ mm}^{-1}$

Block, colourless $0.28 \times 0.17 \times 0.09 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.718 \ {\rm Mg \ m^{-3}}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 5397 reflections

Crystal data

 $[Zn_{3}(C_{8}H_{8}O_{5})_{2}(C_{3}H_{3}N_{2})_{2}(C_{3}H_{4}N_{2})_{2}]$ $M_{r} = 834.71$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 7.9993 (1) Å b = 22.3923 (2) Å c = 9.7586 (1) Å $\beta = 112.633$ (1)° V = 1613.37 (3) Å³ Z = 2

Data collection

Bruker APEXII CCD 3714 ind diffractometer 3714	lependent reflections
Radiation source: fine-focus sealed tube 3197 ref	flections with $I > 2\sigma(I)$
graphite $R_{\rm int} = 0.$	023
ω scans $\theta_{max} = 2$	$27.6^\circ, \theta_{\min} = 1.8^\circ$
Absorption correction: multi-scan $(SADABS;$ Sheldrick, 1996) $h = -10$	→ 10
$T_{\min} = 0.629, \ T_{\max} = 0.822$ $k = -29$	→28
13439 measured reflections $l = -12-$	→12

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0306P)^{2} + 0.4382P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\text{max}} = 0.001$
$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.02705 (3)	0.327653 (8)	0.68480 (2)	0.02488 (7)
Zn2	0.0000	0.5000	1.0000	0.02427 (8)
C1	0.5856 (3)	0.35035 (11)	0.8423 (3)	0.0508 (6)
H1A	0.7015	0.3415	0.8476	0.061*
C2	0.4334 (3)	0.31994 (10)	0.7673 (3)	0.0471 (5)
H2A	0.4259	0.2860	0.7103	0.057*
C3	0.3601 (3)	0.39293 (9)	0.8744 (2)	0.0391 (5)
НЗА	0.2943	0.4196	0.9073	0.047*
C4	-0.1719 (3)	0.18968 (8)	0.8571 (2)	0.0333 (4)
H4A	-0.2451	0.1565	0.8488	0.040*
C5	-0.1783 (3)	0.22588 (8)	0.7447 (2)	0.0325 (4)
H5A	-0.2566	0.2218	0.6459	0.039*
C6	0.0280 (3)	0.25794 (8)	0.94487 (19)	0.0293 (4)
H6A	0.1206	0.2810	1.0110	0.035*
C7	-0.1093 (2)	0.44234 (7)	0.70651 (18)	0.0222 (3)
C8	-0.1796 (2)	0.50314 (7)	0.64085 (19)	0.0230 (3)
H8A	-0.2375	0.5001	0.5325	0.028*
С9	-0.3146 (2)	0.52910 (8)	0.70277 (19)	0.0267 (4)
H9A	-0.3937	0.4991	0.7198	0.032*
C10	-0.4169 (3)	0.58168 (8)	0.6063 (2)	0.0364 (4)
H10A	-0.5217	0.5927	0.6277	0.044*
H10B	-0.4555	0.5726	0.5015	0.044*
C11	-0.2716 (3)	0.63123 (8)	0.6539 (2)	0.0395 (5)
H11A	-0.2465	0.6459	0.5702	0.047*
H11B	-0.3078	0.6644	0.7003	0.047*
C12	-0.1090 (3)	0.59822 (8)	0.7649 (2)	0.0296 (4)
H12A	-0.0177	0.6248	0.8336	0.036*
C13	-0.0311 (2)	0.55369 (7)	0.68508 (19)	0.0250 (4)
H13A	-0.0282	0.5722	0.5950	0.030*
C14	0.1603 (2)	0.53377 (8)	0.78551 (19)	0.0265 (4)
N1	-0.0501 (2)	0.26968 (6)	0.80047 (16)	0.0281 (3)
N2	-0.0394 (2)	0.20990 (6)	0.98546 (16)	0.0288 (3)
N3	0.2899 (2)	0.34675 (7)	0.78774 (18)	0.0333 (4)
N4	0.5372 (2)	0.39636 (8)	0.9085 (2)	0.0429 (4)
H4B	0.6087	0.4232	0.9632	0.051*
01	-0.19478 (17)	0.55896 (5)	0.83772 (13)	0.0271 (3)
02	-0.09952 (19)	0.40346 (5)	0.61684 (13)	0.0326 (3)
03	0.2753 (2)	0.52710 (8)	0.73430 (17)	0.0515 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

O4	-0.06572 (18)	0.43224 (5)	0.84191 (13)	0.0293 (3)
05	0.19131 (16)	0.52692 (6)	0.92484 (13)	0.0299 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03053 (12)	0.02231 (11)	0.02322 (11)	-0.00257 (8)	0.01193 (9)	-0.00100 (7)
Zn2	0.02831 (15)	0.02813 (15)	0.01822 (14)	-0.00145 (11)	0.01100 (12)	-0.00224 (10)
C1	0.0314 (11)	0.0607 (14)	0.0607 (15)	-0.0008 (10)	0.0180 (11)	-0.0062 (12)
C2	0.0400 (12)	0.0476 (13)	0.0559 (14)	0.0009 (9)	0.0209 (11)	-0.0142 (10)
C3	0.0339 (10)	0.0342 (10)	0.0435 (12)	0.0002 (8)	0.0085 (9)	-0.0071 (9)
C4	0.0360 (10)	0.0285 (9)	0.0353 (11)	-0.0069 (8)	0.0135 (9)	0.0026 (8)
C5	0.0348 (10)	0.0339 (10)	0.0254 (9)	-0.0060 (8)	0.0077 (8)	0.0002 (7)
C6	0.0355 (10)	0.0247 (9)	0.0267 (9)	-0.0021 (7)	0.0107 (8)	0.0007 (7)
C7	0.0217 (8)	0.0222 (8)	0.0228 (9)	-0.0034 (6)	0.0088 (7)	-0.0027 (6)
C8	0.0265 (9)	0.0228 (8)	0.0185 (8)	-0.0016 (6)	0.0075 (7)	-0.0007 (6)
C9	0.0256 (9)	0.0266 (9)	0.0275 (9)	-0.0022 (7)	0.0096 (7)	-0.0005 (7)
C10	0.0303 (10)	0.0353 (10)	0.0400 (11)	0.0077 (8)	0.0095 (9)	0.0041 (8)
C11	0.0435 (12)	0.0266 (10)	0.0465 (12)	0.0070 (8)	0.0154 (10)	0.0055 (8)
C12	0.0342 (10)	0.0217 (8)	0.0334 (10)	-0.0031 (7)	0.0134 (8)	-0.0021 (7)
C13	0.0287 (9)	0.0253 (8)	0.0229 (8)	-0.0028 (7)	0.0121 (7)	0.0023 (6)
C14	0.0271 (9)	0.0272 (9)	0.0270 (9)	-0.0059 (7)	0.0124 (8)	-0.0009 (7)
N1	0.0341 (8)	0.0252 (7)	0.0249 (8)	-0.0016 (6)	0.0114 (7)	0.0028 (6)
N2	0.0376 (9)	0.0254 (8)	0.0256 (8)	0.0013 (6)	0.0148 (7)	0.0035 (6)
N3	0.0301 (8)	0.0309 (8)	0.0371 (9)	-0.0032 (7)	0.0110 (7)	-0.0046 (7)
N4	0.0319 (9)	0.0396 (9)	0.0461 (11)	-0.0091 (7)	0.0028 (8)	-0.0045 (8)
01	0.0316 (7)	0.0272 (6)	0.0250 (6)	0.0010 (5)	0.0136 (5)	-0.0020 (5)
02	0.0497 (8)	0.0243 (6)	0.0235 (6)	0.0059 (5)	0.0137 (6)	-0.0031 (5)
03	0.0368 (8)	0.0864 (12)	0.0406 (9)	0.0114 (8)	0.0249 (7)	0.0152 (8)
O4	0.0439 (8)	0.0233 (6)	0.0203 (6)	0.0005 (5)	0.0120 (6)	-0.0004 (5)
05	0.0258 (6)	0.0419 (7)	0.0226 (6)	-0.0049 (5)	0.0099 (5)	-0.0012 (5)

Geometric parameters (Å, °)

Zn1—O2	1.9570 (12)	С6—Н6А	0.9300
Zn1—N1	1.9686 (14)	С7—О4	1.251 (2)
Zn1—N2 ⁱ	1.9944 (14)	C7—O2	1.2578 (19)
Zn1—N3	1.9968 (16)	С7—С8	1.518 (2)
Zn2—O5 ⁱⁱ	2.0266 (12)	C8—C9	1.540 (2)
Zn2—O5	2.0266 (12)	C8—C13	1.576 (2)
Zn2—O4	2.0819 (12)	C8—H8A	0.9800
Zn2—O4 ⁱⁱ	2.0819 (12)	С9—О1	1.459 (2)
Zn2—O1 ⁱⁱ	2.1862 (12)	C9—C10	1.533 (2)
Zn2—O1	2.1862 (12)	С9—Н9А	0.9800
C1—C2	1.340 (3)	C10—C11	1.543 (3)
C1—N4	1.350 (3)	C10—H10A	0.9700
C1—H1A	0.9300	C10—H10B	0.9700
C2—N3	1.376 (3)	C11—C12	1.525 (3)

C2—H2A	0.9300	C11—H11A	0.9700
C3—N3	1.317 (2)	C11—H11B	0.9700
C3—N4	1.327 (3)	C12—O1	1.457 (2)
С3—НЗА	0.9300	C12—C13	1.537 (2)
C4—C5	1.349 (3)	C12—H12A	0.9800
C4—N2	1.369 (2)	C13—C14	1.533 (2)
C4—H4A	0.9300	C13—H13A	0.9800
C5—N1	1.371 (2)	C14—O3	1.213 (2)
С5—Н5А	0.9300	C14—O5	1.294 (2)
C6—N1	1.329 (2)	N2—Zn1 ⁱⁱⁱ	1.9944 (14)
C6—N2	1.330 (2)	N4—H4B	0.8600
O2—Zn1—N1	122.06 (6)	C10—C9—C8	109.78 (15)
O2—Zn1—N2 ⁱ	97.25 (6)	O1—C9—H9A	113.8
N1—Zn1—N2 ⁱ	104.86 (6)	С10—С9—Н9А	113.8
O2—Zn1—N3	106.98 (6)	С8—С9—Н9А	113.8
N1—Zn1—N3	110.76 (7)	C9—C10—C11	101.84 (15)
N2 ⁱ —Zn1—N3	114.52 (7)	C9—C10—H10A	111.4
O5 ⁱⁱ —Zn2—O5	180.000 (1)	C11—C10—H10A	111.4
O5 ⁱⁱ —Zn2—O4	92.34 (5)	С9—С10—Н10В	111.4
O5—Zn2—O4	87.66 (5)	C11—C10—H10B	111.4
O5 ⁱⁱ —Zn2—O4 ⁱⁱ	87.66 (5)	H10A—C10—H10B	109.3
O5—Zn2—O4 ⁱⁱ	92.34 (5)	C12—C11—C10	101.71 (15)
O4—Zn2—O4 ⁱⁱ	180.0	C12—C11—H11A	111.4
$O5^{ii}$ —Zn2— $O1^{ii}$	89.15 (5)	C10-C11-H11A	111.4
O5—Zn2—O1 ⁱⁱ	90.85 (5)	C12—C11—H11B	111.4
O4—Zn2—O1 ⁱⁱ	90.17 (4)	C10-C11-H11B	111.4
O4 ⁱⁱ —Zn2—O1 ⁱⁱ	89.83 (4)	H11A—C11—H11B	109.3
O5 ⁱⁱ —Zn2—O1	90.85 (5)	O1—C12—C11	101.88 (15)
O5—Zn2—O1	89.15 (5)	O1—C12—C13	102.39 (13)
O4—Zn2—O1	89.83 (4)	C11—C12—C13	110.85 (16)
O4 ⁱⁱ —Zn2—O1	90.17 (4)	O1—C12—H12A	113.5
O1 ⁱⁱ —Zn2—O1	180.0	C11—C12—H12A	113.5
C2C1N4	106.4 (2)	C13—C12—H12A	113.5
C2—C1—H1A	126.8	C14—C13—C12	111.41 (14)
N4—C1—H1A	126.8	C14—C13—C8	115.37 (13)
C1—C2—N3	109.4 (2)	C12—C13—C8	101.21 (13)
C1—C2—H2A	125.3	C14—C13—H13A	109.5
N3—C2—H2A	125.3	C12—C13—H13A	109.5
N3—C3—N4	110.88 (18)	C8—C13—H13A	109.5
N3—C3—H3A	124.6	O3—C14—O5	123.32 (17)
N4—C3—H3A	124.6	O3—C14—C13	120.10 (16)
C5—C4—N2	108.61 (16)	O5—C14—C13	116.54 (15)
С5—С4—Н4А	125.7	C6—N1—C5	104.69 (15)
N2—C4—H4A	125.7	C6—N1—Zn1	127.96 (13)
C4—C5—N1	108.57 (16)	C5—N1—Zn1	126.56 (12)

supplementary materials

С4—С5—Н5А	125.7	C6—N2—C4	104.75 (14)
N1	125.7	C6—N2—Zn1 ⁱⁱⁱ	130.16 (12)
N1—C6—N2	113.37 (16)	$C4$ — $N2$ — $Zn1^{iii}$	125.09 (12)
N1—C6—H6A	123.3	C3—N3—C2	105.22 (17)
N2—C6—H6A	123.3	C3—N3—Zn1	126.68 (14)
04—C7—O2	122.91 (15)	C2—N3—Zn1	127.52 (14)
O4—C7—C8	121.03 (15)	C3—N4—C1	108.14 (17)
O2—C7—C8	116.06 (15)	C3—N4—H4B	125.9
С7—С8—С9	112.03 (14)	C1—N4—H4B	125.9
C7—C8—C13	114.24 (14)	C12—O1—C9	96.04 (12)
C9—C8—C13	100.96 (13)	C12—O1—Zn2	112.31 (10)
С7—С8—Н8А	109.8	C9—O1—Zn2	114.50 (9)
С9—С8—Н8А	109.8	C7—O2—Zn1	121.81 (11)
С13—С8—Н8А	109.8	C7—O4—Zn2	122.65 (10)
O1—C9—C10	102.25 (14)	C14—O5—Zn2	123.34 (11)
O1—C9—C8	102.16 (13)		
N4-C1-C2-N3	-0.5 (3)	C1—C2—N3—C3	0.3 (3)
N2-C4-C5-N1	-0.1 (2)	C1—C2—N3—Zn1	171.94 (17)
O4—C7—C8—C9	-42.3 (2)	O2—Zn1—N3—C3	38.44 (19)
O2—C7—C8—C9	137.10 (16)	N1—Zn1—N3—C3	-96.74 (18)
O4—C7—C8—C13	71.7 (2)	N2 ⁱ —Zn1—N3—C3	144.95 (17)
O2—C7—C8—C13	-108.87 (17)	O2—Zn1—N3—C2	-131.53 (18)
С7—С8—С9—О1	86.39 (15)	N1—Zn1—N3—C2	93.29 (19)
C13—C8—C9—O1	-35.59 (15)	$N2^{i}$ —Zn1—N3—C2	-25.0 (2)
С7—С8—С9—С10	-165.65 (14)	N3—C3—N4—C1	-0.4 (3)
C13-C8-C9-C10	72.37 (16)	C2—C1—N4—C3	0.5 (3)
O1-C9-C10-C11	33.06 (18)	C11—C12—O1—C9	57.35 (15)
C8—C9—C10—C11	-74.84 (18)	C13—C12—O1—C9	-57.40 (14)
C9-C10-C11-C12	2.0 (2)	C11—C12—O1—Zn2	176.96 (11)
C10-C11-C12-O1	-36.52 (18)	C13—C12—O1—Zn2	62.21 (13)
C10-C11-C12-C13	71.83 (19)	C10—C9—O1—C12	-55.89 (15)
O1-C12-C13-C14	-88.49 (16)	C8—C9—O1—C12	57.76 (14)
C11-C12-C13-C14	163.49 (15)	C10—C9—O1—Zn2	-173.78 (11)
O1—C12—C13—C8	34.66 (16)	C8—C9—O1—Zn2	-60.13 (13)
C11—C12—C13—C8	-73.36 (17)	O5 ⁱⁱ —Zn2—O1—C12	170.75 (10)
C7—C8—C13—C14	0.5 (2)	O5—Zn2—O1—C12	-9.25 (10)
C9—C8—C13—C14	120.96 (15)	O4—Zn2—O1—C12	-96.91 (10)
C7—C8—C13—C12	-119.84 (15)	O4 ⁱⁱ —Zn2—O1—C12	83.09 (10)
C9—C8—C13—C12	0.57 (16)	O5 ⁱⁱ —Zn2—O1—C9	-81.07 (11)
C12-C13-C14-O3	-140.91 (18)	O5—Zn2—O1—C9	98.93 (11)
C8—C13—C14—O3	104.4 (2)	O4—Zn2—O1—C9	11.27 (11)
C12-C13-C14-O5	36.7 (2)	O4 ⁱⁱ —Zn2—O1—C9	-168.73 (11)
C8—C13—C14—O5	-77.90 (19)	O4—C7—O2—Zn1	-11.7 (2)
N2-C6-N1-C5	0.4 (2)	C8—C7—O2—Zn1	168.88 (11)
N2—C6—N1—Zn1	-169.85 (12)	N1—Zn1—O2—C7	61.89 (16)
C4—C5—N1—C6	-0.2 (2)	$N2^{i}$ —Zn1—O2—C7	174.51 (14)
C4—C5—N1—Zn1	170.27 (13)	N3—Zn1—O2—C7	-67.06 (15)
	. /		· /

O2—Zn1—N1—C6	-105.18 (16)	O2—C7—O4—Zn2	159.29 (13)
N2 ⁱ —Zn1—N1—C6	146.15 (16)	C8—C7—O4—Zn2	-21.3 (2)
N3—Zn1—N1—C6	22.12 (17)	O5 ⁱⁱ —Zn2—O4—C7	124.12 (14)
O2—Zn1—N1—C5	86.57 (16)	O5—Zn2—O4—C7	-55.88 (14)
N2 ⁱ —Zn1—N1—C5	-22.11 (17)	$O1^{ii}$ —Zn2—O4—C7	-146.73 (14)
N3—Zn1—N1—C5	-146.14 (15)	O1—Zn2—O4—C7	33.27 (14)
N1	-0.5 (2)	O3—C14—O5—Zn2	-150.62 (16)
N1—C6—N2—Zn1 ⁱⁱⁱ	179.67 (12)	C13—C14—O5—Zn2	31.8 (2)
C5—C4—N2—C6	0.3 (2)	O4—Zn2—O5—C14	47.74 (14)
C5-C4-N2-Zn1 ⁱⁱⁱ	-179.80 (13)	O4 ⁱⁱ —Zn2—O5—C14	-132.26 (14)
N4—C3—N3—C2	0.1 (2)	O1 ⁱⁱ —Zn2—O5—C14	137.88 (14)
N4—C3—N3—Zn1	-171.69 (14)	O1—Zn2—O5—C14	-42.12 (14)
Symmetry codes: (i) x , $-y+1/2$, $z-1/2$; (i	ii) - <i>x</i> , - <i>y</i> +1, - <i>z</i> +2; (iii) <i>x</i> , - <i>z</i> +2;	y+1/2, z+1/2.	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N4—H4B····O5 ^{iv}	0.86	1.91	2.756 (2)	167.
Ω_{restrict} and Ω_{rest} $(1, 1)$ $(1, 1)$ $(1, 2)$				

Symmetry codes: (iv) -x+1, -y+1, -z+2.

